Additive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements
نویسندگان
چکیده مقاله:
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a positive number $c$ such that $Phi(iI)Phi(iI)^{*}leq cPhi(I)Phi(I)^{*}$, then $Phi$ is the sum of a linear Jordan *-homomorphism and a conjugate-linear Jordan *-homomorphism. If, moreover, the map $Phi$ commutes with $|.|^k$ on $mathcal{A}$, then $Phi$ is the sum of a linear *-homomorphism and a conjugate-linear *-homomorphism. In the case when $k not=1$, the assumption $Phi(I)$ being a projection can be deleted.
منابع مشابه
additive maps on c$^*$-algebras commuting with $|.|^k$ on normal elements
let $mathcal {a} $ and $mathcal {b} $ be c$^*$-algebras. assume that $mathcal {a}$ is of real rank zero and unital with unit $i$ and $k>0$ is a real number. it is shown that if $phi:mathcal{a} tomathcal{b}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $phi(|a|^k)=|phi(a)|^k $ for all normal elements $ainmathcal a$, $phi(i)$ is a projection, and there exists a posit...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولOrthogonally Additive Polynomials on C*-algebras
Let A be a C*-algebra which has no quotient isomorphic to M2(C). We show that for every orthogonally additive scalar nhomogeneous polynomials P on A such that P is Strong* continuous on the closed unit ball of A, there exists φ in A∗ satisfying that P (x) = φ(x), for each element x in A. The vector valued analogue follows as a corollary.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 41 شماره Issue 7 (Special Issue)
صفحات 85- 98
تاریخ انتشار 2015-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023